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Abstract

The paper begit_s with a short overview of the recent work done in the field of discontinuotm reinforced

composites, focttsing on the different parameter_ which influence the material behavior of discontinuous

reinforcedcomposites, as well as the variottsanalvsLsapproaches undertaken. Based on thLs overview

itbecame evident, that in order to investigatethe enumerated effectsin an efficientand comprehensive

manner, an alternativeapproach to the computationally intensivefinite-elementbased micro-mechanics

approach Ls required. Therefore an investigationisconducted to demonstrate the utili_-of utilizingthe

generalized method of cel_s (Gh|C). a semi-anal_ical micromechanlcs-based approach, to simulate the

elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared

with 1) simulations using other micromechanical based mean field models and finite element (FE) unit

cell models found in the literature given elastic material behavior, as well as 2) finite element unit cell and

a new semi-anal_ical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely

have a window of appllcahility when simulating discontinuot_s b- reinforced composite material behavior.

1 Introduction

Metal matrix composites (MMCs) have reoeived cousiderable attention o_er the past 30 years due to

their attractive specific strength, stiif_aess, fatigue and thermal properties[Ch'ne and Withers (1993)], [Kelly

and Zgaeben (Eds) (2000)], [Sinclair and Greg_on (1997)], [Ll_'d (1994)]. MMC materials can be gener-

ically classified _- their type of reinforcement, which consists of either continuous fiber (identified herein

as CFMMC) or discontinuous particulate (termed herein as DFLX) reinforcements. V_llile both classes of

materials share common features at a fundamental lex_ (e.g., matrLx/reinforoament compatibility, interra-

cial properties sensitix4ty, ardfitecturai interaction (reinforcement size, shape and packing) and property

optimization, at a practical level dramatic differences can and do exist. For instance, CFMMC typically

have exceptionally high strength and stitTaaess capabilities that are inherent b" strongly angsotropic; whereas,

DI_X material properties are typically more gsotropic in nature x_ith lou_er specific strength, yet have excel-

lent stiffness capabiliD'. Clearly, failure to appreciate and consider expUcitb" the appropriate reinforcement

morphology can result in inaocurate performance assessments, as elaborated upon in the next section. The

combination of good transverse properties, relatively low cost, high workability and reasonable increases in
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performance over monolithic metallic allm's have made discontinuous reinforced materials the most commer-

cially attractive _-stem to date for many stiflhess driven applications [C1une and Withers (1993)], [Kelly and

z,, be (Eds) (2ooo)1,[r,n  e and r,Xa ,' a (2000)1.
Although manufacturing issues and cost are probably the greatest impediments to the wide application of

these adxanced materials, it ls also clear that accurate design and life prediction tools are greatly needed to

facilitate the implementation of these developing materials. Although elc_sure has not been reached regarding
the best models for use in design and life prediction, it has become evident that if a model is ever to serve a

purpose beyond that of ha,sic research, it must fulfill several primaD" requirements. These include a significant

level of accuracy on both the macro and micro .scales, computational efficient, and compatibility with the

finite element method Fulfillmeat of these requirements allows a model to serve the comt_site deveioper

_ enabling quick and easy xariation of composite parameters for material deuelopment and optimization

purpexses. LikewLse, those who attempt to utilize composites in structural design are u_li served if the model

is compatible with the finite element method. The generalized method of ceLLs (GMC), originally developed

_- Aboudi (1991, 1995), is a good choice for implementation into modeling tools for adxanced composites,

given the requirements described above. Particularly, whenever micmfield as well as macrofield quantities

will be needed - as is the c._se when attempting to account for inelastic material behavior in MMCs.

GMC is a fully analytical micromechanics model for multi-phased materials with arbitrary periodic

micr_structures. It provides pseudo dosed-form multiaxial constitutive equations for such materials, and
allows straightforward implementation of physicaUy-bo.sed x_scoplastie deformation mo_.is, as xveU as arbi-

trary failure and damage models for each phase. Further, recent independent adxances haw simplified the

implementation of GMC as an elemental constituent material model in finite element analysis [Arnold et al,

(1999)], and significantly increased the model's computational efficient" [Pindera and Bednarcyk (1999)].
GMC has been implemented in the NASA Gleam _rch Center comprehensive micromechanic_ analysis

code, MAC/CMC [Arnold et al, (1999)]. The code has many features that render it useful for design, de-

formation modeling, and life pmcliction for a wide range of materials. These features include the abUity to

simulate generalthermomechanical loadingon composites whc,segeometriesare represented_- a libraD" of

continuous and discontinuous repeating unit cells, a libraD- of nonisothermal elastic/viscoplastic constitutiue

models, fatigue damage analysis, yield surface analysis, laminate analysis, and interface modeling.
In the past,the _trionscapabilitiesdescribedabove have been exe_ised extensively,ho_vex_r,the pre-

dominant material system examined has been that of the CFMMC [Aboudi(1996)],[Arnold,et. al. (1996)],

[Goldberg and Arnold (2000)], [Iyer et al. (2000)], [Bednarcyk and Arnold (2000a)], [LL_amden et al. (2000)],
[Bechar_'k and Arnold (2000b)]. Consequentb', the primal- objectiue of this current stud5- ls to asse_s the

applicabili_- of ChIC in predicting the elastic and inelastic (pl&stic) behavior of particulate reinforced com-

pc_sites (Dl_XLs). The literature indicates that DFLX behavior ls significantb" influenced _- x_Lrions charac-

teristic parameters like fiber arrangements (staggered, non-staggered, clnster, random, packing type), fiber

x_lume fraction, fiber aspect ratios, fiber-matrix stiffness ratios and reinforcement type (cylinder, particle,

etc. ). A briefrexqew of this ls provided in the background .section.Ex_a though GMC ls fullycapa-

bleofmodeling arbitrarymultiphased compasite architectunss,to facilitatecomparison with previous work

reported in the literatureand limitthe scope of this investigation,only one type of DP_X isconsidered-

namely, the simulationofalignedshort fibercomposites with non-staggeredcylindricalreinforcementsand a

hexagonal packing arrangement. The need forsuch an &ssessment sten_sfrom the factthat although CMC

consistsof analyticalequations that axe able to deal with both the homogeatizationand localizationprocess

for composite materials in a weD" nttmerically efficient way, the method's linear displacement field assumption

in combination with the imposition of displacement and traction boundaD" conditions in an average sense,

gives rize to an inherent lack of normal and shear component coupling. This lack of coupling is such that
application of a global normal (or shear) stress field wUl produce only a local normal (or shear) stre_s field

Cogsequently, for cases (e.g., DFtX materials) in which the load transfer mechanism between phases (e.g.,

matrix and fibers) is shear dominated, the lack of normal-shear coupling may become quite problematic.

In particular, in the case of an elastoplastic matrix regime placed between two short fibers, GMC's lack of

shear coupling requires both the fiber and matrix to carry the same normal stress component. This tends

to produce an overly compliant (soft) composite response. The results presented within chmonstrate this
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fact,andmoreimportantlycharacterizethex_q_ndowofapplicabilityfortheGhICmethod_dthinthecontext
of diseontinuouslyreinforcedmetalliccompc_sites.Theintroduction of an "artificial" elastoplastic matrix
material between the particulate reinforcements, is pml_sed in an attempt to extend the applicabili_- of

GMC. Although, pmxSding more reasonable macro behaxdor, such a strategs still results in incorrect mi-

cmmechanical stress fields within the unit cells, there," limiting the useflflne_s of the current GhIC model

when calculating failure or fatigue analyses.

With section 2, the paper beghts by reviewing recent _x_rk done in the field of .short fiber compc_sites .so

as to reve_J the k_" parameters influencing DI_X material beha\_ior. Section 3 then articulates the xariotts

analytical and numerical approaches employed and compared in this paper. Finally, .section 4 presents a

comparLson of GhIC results with other analytical and numerical results within the elastic and elastopl_tstic

range, respectively.

2 Background: Factors Influencing DRX Materials

The early work on the principles of strengthening in comp(x_ites reinforced _ith dL_ontinuous fibers,

whiskers or particulates carried out in the 1950's and 1960's is characterized _" the use of relativeb" simple

models that do not expUcitly take into account the actual inclusion distribution through interaction between

adja_Jat inclusious. Many modeLs have been empl_-ed to ,study the effect of inclusion shape on the elastic

moduli, a.s well as subsequent inelastic r_ponse, and also the m_c-.hanism of ztre_ transfer from the matrix

to a finite-length fiber. For i_stance, E.shell_"s analytical .solution to the problem of an arbitrarily .shaped

eUipsoidal inclusion embedded in an homogeneous material deformed _" uniform tractions or displacements

at infinity has formed the bo_sis for calculating the effective response of macr_copically homogeneous two-

phase composites using a number of approaches [Eshelby (1957)]. These approaches include the self-consistent

zcheme which neglects the inclusion/matrix interaction in calculating str_ fields in the inclusion phase [Hill

(1965)], and the Mort-Tanaka method (MTM) which takes this interaction into account in an approximate

f&_fion [hloH and Tanaka (1973)]. The problem of an array of ellip_idal inclttsion,s with different aspect
ratic_s embedded in an elastopla.stic matrix can be treated tLsing the Mort-Tanaka approach, as was done

_" [Brox_-n and Clarke (1975)] investigating the effect of inclusion shape on x_rk hardening of metal matrix
composites. However, this method typicaUy underestimate_ yielding and sutmequent hardening effects due to

the use of mean stre_s and strain fields in the matrix phase, and treat,s all inclusion distributions on the same

footing .so long as macrc_scopic homogeneity is preserved. Along similar lines, the so-called shear-lag analysis

has been employed to stud)" the effectix_ness of short fibers as reinforcement using the strength-of-materials

approach to analyze stress fields around and within a finite-length fiber embedded in a surrounding matrix

[Dow (1963)]. V_file this _'pe of analysis helps to identify shearing of the matrix as the primal" mech_
of force transfer from the matrix to the fiber, and thus the critical fiber length over which the axial stress is

introduced into the fiber from both ends, it Ls based on a ve_" simplified one-dimensional analysis of stress

fields which neglects the influence of morpholoK)" of .surrounding fibers, among other thin_s.

Despite the relatively long histo_" of modeling the respowse of discontinuous fiber composites, only

recently have systematic investigatious of the effects of reinforcement shape and arrangement b_n initiated

for these types of comIx_sites. Inclusion of the third dimetmion in the analysis of the elastic and inelastic

response of discontinuot_s fiber comp_sltes incre_:_s the number of _ariables several fold relative to the

anaiy,sis of continuous fiber comlx_sites. Thus, in addition to the arran_nent and shape of the reinforcement

in the plane trausveme to the loading direction, x_riables a._sociated x_th the planes parallel to the loading
direction were includecL These _ariables include the fiber &spect ratio, fiber spacing in the vertical and

horizontal direction.s, those associated with the effect of fiber clustering, and the extent of overlap between

adjacent columns of fibers. These added complexities typically require numerical solution procedures, such &s

the finite-element analysis; partienlarly if complicated reinforcement shapes and arrangements are in_zflvecL

Finite-element investigatious carried out in recent years have focused on separating the effects of inclusion

shape from the effect_ of inclusion packing arr_- geomet D- on the overall elastic, elastoplastic and creep

behaxJor. Due to man)" different types of reinforcement empl_'ed in discontinuously-reinforced compc_sites,

including whiskers, particulates, platelets as xvell as finite-length fibers, extensive analysers of inclusion shape
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have bean conducted for thi_ cla_ of composites. Examples of inclusion shapes inx_astigated include spherical

particles, circular _'lindem x_th different aspect ratios, trtmcated circular (octagonal) _'linders, double-cone

particles, and ellipsoidal or disk-llke particles(platelets). Similarly, different pacidng arrays studied include

hexagonal arrangements of inclusions in the plane of loading distributed in either regular (aligued) arr_'s or

off-set (sta_ered) arr_'s in the planes parallel and perpendicular to the loading direction .so as to model and

asse_s the influence of distribution randomness thai is _'pical in DI_X compc_sites. Inclusions such as disk-

like particles arranged in packet morlaholo_ies have also been considered, as have clustered arrangements.

These investigations have been drixam in large part _" the wide range of inciuLsion morphologies that result

from cu_t material processing techniques, a,s well as _- the wide range of shapes ax_.ilable for the inclusion

_a.se.

In order to reduce the complexity of a three-dimensional finite-element formulation in analyzing the
response of d_continuous fiber, whisker or particulate composites, xarious idealizations of the unit cell have

been employed _" a number of researchers (e.g. dusters of whiskers or _'lindrical particles in the plane

parallel to the applied load have been modeled using a plane strain idaalization of rectangular platelets).

This effeetix_y reduces the problem to that of a continuotmly reinforced comptxsite subjected to loading

in the plane perpendicular to the long fiber direction. The results of such analysis for rectangular ero_s-

sections with different aspect ratios in the plane of loading should be easily deduced from the early analy'sLs

of continuous b re2nforced composites with rectangularly shaped fibem [Ashton et al.(1969) ]. In the ease of
a hexagonal array- of inelnsious in the plane transveme to the loading direction, the problem Lsoften reduced

to an axis3anmetrie (i.e., two-dimensional) problem by approximating the unit cell using a circular _'linder

with different types of lateral bounda_- conditions to simulate the interaction with adjacent fibem (i.e., unit
cells). Using this model, different fiber arrangements in the plane parallel to the applied load have been

investigated, with _ar3"ing amounts of overlap between vertical colunmz of adjacent fibers (e.g. [ChrLstman

et al. (1989)], [Tvergaard (1990)], [Dragone and Nix (1960)], [Povirk et al. (1990)], [Yang et al. (1991)],
[Bao et al.(1991)], [Siegmund et al. (1992)]). In contrast to continuous b" reinforced composites, the inclusion

arrangement in discontlnuonsly reinforced composites is inherentb" three-dimensional, .so that the tree of

plane models requires considerable caution. The results of fully thme-dimeusional finite-element analyses

of such periodic arr_'s are aLso available (e.g. [Lex?- and Papazian (1990)], [Weizsenbek and P_ammerstorfer

(1903)1,label et aL(1993)], [Wei_senbek et al. (1993)]). The- are, however rather restrictive in temm of
fiber arrang_anents and shapes, and tend to entail considerable computational costs. Both three-dimeusional

and a.xis3_ametric unit _ models have been used successfully for studying the nonlinear thermomechanieal

beha_'ior of aligned short reinforced composites.

The literature survey presented indicates significant influence of both inclusion shape and distribution on

the elastic, dastoplastie and creep response of cEseontinuous fiber composites. The extent of this influence for

a given fiber architecture depends on the inclusion content, inclusion/matrix material property mismatch, and

the direction of applied load _ith respect to the internal micro-6tructure. The influence of fiber architecture

on the respon,se of DR, X compc,sites is significant and Ls based on a substantial number of investigations,

each of which was necessarily limited in .scope due to the prevalent use of the finite-element approach in

modeling the response of the investigated ardfitectums. Thus while a considerable body of knowledge

has been generated that sheds light on the effectiveness of different fiber architectures in strengthening
dincontinuous fiber compozites, considerably more _'stematie research Lsrequired to develop desigu guidelines

for optimization of rnaterial pedormance through fiber ardfitecture manipulation.

However, it becomes dear, based on the above dlscttssion, that in order to inx_sti_ate the enumerated

effects in an efficient and comprehe_Lsive manner, including parametric studies inx_lxSng fiber content and

material property mismatch variation_s, an alternative approach to the computationatly intensive finite-

element based micromechanies approach isrequirecLThlz is particularly true when inelastic (viscoplastie)

theories, which t3_ically require computationally intewsive integration algorithms, are empl_-ed to model

the response of metallic matrices. Therefore, the objective of tl_s paper is to apply the computationally

efficient GMC method no as to determine its suitability for predicting the m_pie response of aligned,
DI_X materials.

NASA/TM--2001-211165 4



3 Modeling Approaches

All simulations conducted in tings stud5" con.sLst of aligned short fiber composites, wherein the particulates

(wiskers) are idealized as non-staggered, q-lindrical reinforcements, with a hexagonal packing arrangement.

Similarly other basic constraints impcx_ed are as follows:

The inclusion properties are a,usumed L_otropic and linear elastic, while the matrix Ls taken to be

Lsotropie elastoplastic with L_otropic hardening.The material data for both the inclusion and matrix
are treated a.s temperature-indepealdent and Lsotropic.

• The inclusions are axgssanmetric, identical in shape and size and can be characterized _ an aspect

ratio, at, that relate the length of an inclusion to its diameter.

• Inx_stigated model parameters are the fiber (inclusion) x_lume fraction (i_. = 0.2, 0.5), the fiber-matrLx
stiffness ratio (s_ _ EF/E_w = 3, 30) and the fiber aspect ratio (a, = lid = 5. 15.25).

• The inclusions and matrix are well bonded at their interface and remain that w_ during deformation.

Thus, _ de not corbsider interfacial slip, fiber-matrix debonding or matrix micro-cracking.

• No time dependence (relaxation or creep) effects are included in the present analysis.

Note, obtaining experimental reference data for unidirectional short fiber composites appears to be problem-

atic, as it has not proved lxx_ible to produce physical samples with perfectly aligned fibers. Cons_ently, in
this paper _e a'_id this additional comple.xity of orientation effect _" using three-dime_sional finite element

analysLs of aligned short fiber coml_sites as our reference standarcL rather than experimental results.

3.1 Material Data

The material properties treed for all calculations are gix_n in Table 1. These properties are in the range

of typical fiber-reinforced engineering thermo-plastics (PhlC's - Material 1) and metal matrix composites

(MhIC's - Material 2), nmpectix_el)'. The following input data are needed for both components: x/btmg's

modultrs E and PoL_son's ratio u. The yield ,stre_ crr and the harthning modulus EH are needed for the

matrix material only

Table 1: Prototypical material properties used for all calculations.

Material 1 (sn = 30) Material 2 (sa ffi 3)
Property Fiber Matrix Fiber 'Matrix

E (GPa) 300. 10. 300. 100.
v 0.17 0.33 0.17 0.33

ay (hIPa) - 20. 200.

EH (GPa) - 0.1 1.0

3.2 Armlytical Models

In the past, numerous analytical models haw been examined in an attempt to determine the "best"

(see e.g., [Tucker and Liang (1999)], [Aboudi (1991)]) ax_ilable analytical model for predicting the elastic
stiffness behavior of aligned short fiber reinforced compc_si_es relative to reference FEA-model represen-

tations. Analytical modelz conMdered, were models such as: the Mori-Tanaka method (MThI)[Mori and
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(a) (b)

mNSIWl

(c)

Figure 1: Sketch of incltmiovus-matrix shapes for the applied aligned short fiber composite models. (a) Mort-

Tanaka model, (b) Hashin-Shtrilanan estimates of Ponte Castafieda and WilEs, (c) GMC-model (a_ = 5.0)

Tanaka (1973)], serf-consistent models, bounding models (e.g., xariable constraint model (VCM) and Hashin-

Shtrik3_an bounds and estimate), Halpin-Tsm equations and shear lag models (,see AppendLx B for details

of the elastoplastic extension u.secl in this stub'). For example, the recent work of [Tucker and Liang (1999)]
recommended that the Mori-Tana "lm model was the "best" choice for estimating the o_rall elastic stiffne_ss

behavior of aligned short fiber comtx_sites.

In this study _ue will extend the scope of comparison to include the semi-analytical generalized method of
cells model (GMC) and compare GhIC _Jth the MTM, VCM, FEM results and Hashin-Shtrihnan estimates

(HSE) 1 of [Ponte Castafieda and Willis (1995)]. Benx_sfi,ste (1987) has provided a particularly simple and
clear explanation of the Mort-Tanaka approach. Analytical bounds for the stiffness behavior can be obtained

from the xariable constraint model (VCM), published _" [Pedemen and Withem (1992)]. From a practical
point of View it is of interest thai the lower (VCM) bound corresponds to the standard Mort-Tanaka results,

while the upper (VCM) bound can also be obtained from the Mort-Tanaka approach after a .so called "color

inxersion" (i.e.. exchanging the mle_ of inchmion and matrix). The_e bounds obtained from the Mort-Tanaka

approach also correspond to the _\'fllLs bounds in the ca._e of aligned inclusions, compare for example, _Veng

(rag0)].

It is important to remember that the l_asic _ssumption of the Mori-Tanaka method i,s that the aligned

ellipsoidal inchmions are surrounded _, coaxial aligned ellipsoidal matrix domains in which both ellipsoids

haue the same aspect ratio (Fig.la) and that each inclusion (fiber) x_ithin a concentrated composite sees the

a_erage strain of the matrix. Consequently, the MTM provides only macro (auerage) fields and properties

and therefore lacks the abili_" to acktr_s adequately pmbleam dominated _" micmfield quantities, such as
damage and inelastic behavior analysis. Alternatively, GMC allows both homogenization and localization of

the associated stre_s and strain fields (see Appendix A), thereby providing not only macro stiffnee_s properties

but also local eigenstrain field quantities. Note, that in the premmt inue_tigation the GMC unit cell differs

from MTM as different fiber-unit cell aspect ratkxs (Fig_.2 and 3) can be realized since the whole inclusion

(fiber) is surrounded _- a matrix material layer of constant thickness (side-to-side and end-to-end distances

are equal) and labeled, e, suhsequentl._. Becau_se of this x_trying aspect ratio, HSE for the prediction of the

effectiue moduli of the elastic inhomogeneous material gix_en in _onte Castadeda and Willis (1995)] are

introduced (Fig. lb) to oxercome the drawback of the original Mort=Tanaka method so that different fiber-unit

cellaspect ratios can be realized. Note, these Hashin-Shtrikman estimates correspond identically with the

Mort-Tanaka method for the case of aligned, coaxial inchtsions with equal aspect ratios of the inclvMon and

the surrounding matrix ellipsoids (see [Hu and \Veng (2000)])

1Note. the FIashin-Shtrikrnan estiraates differ from the Hashln-Shtrikman bounds, as [Ponte Ca.qtafieda and Willis (1995)]
and [Willis (1977)] removed the restriction of statistically isotropic overall material S_TaraetD" (treed by both HS and Willis)
by separating the spatial distribution of inclusions from the inclusion shape. Also in the HSE. [Ponte Castafieda and Willis
(1995)] employed only a single reference material {e.g., the effective material like in self cormistent models) instead of the two
used by [Willis (1977)].

NASA/TM--2001-211165 6



3.3 Generalized Method of Cells

Although, GhlC is capable of analyzing any multipha._d composite material _x_th an arbitral" internal

micrastmcture and reinforcement shape (see Al:rpendLx A), the unit cell analy2_l in this stub" £s sho_Ta

in Fig. 2. Due to the periodic bounda_" conditions inherent to the GMC-model the whole l_VE mu_st be

modeled, instead of only a quarter of the unit cell (see the dashed rectangle in Fig. 2) a.s typicall.v done

in the c__e of FEA representations where symmetric boundaQ conditions are applied. Apart from this

x3

b

x2 U

Xl

Figure 2: Aligned short fiber GMC unit _Jl model, comprised of 338 subcells.

fact, the unit cell dimensions were chosen similar to the dimensions of the FE-model (,see Fig. 3). The fiber

was approximated with more than one subcell (sufficient for the longitudinal stitfmess behavior) in order to

reduce the error in the transveme response (i.e., the difl_erence betw_een E22 and E33) and better approximate

the targeted transversely isotropic response behax4or resulting from a hexagonal packing arrangement. The

cro_s sectional area of the approximated fiber Ls taken equaJ to the cross sectional area of the actual circular

fiber. These conditions, to_ether with the kno_n fiber diameter, fiber wlume fraction, and the distance, e

(see Fig. 3) suffice to determine the dimensions of the unit cell for each fiber aspect ratio a_=lf/dy. All

GMC analyses were realized with the computer code MAC/GMC [Arnold et a1.(1999)] developed at the
NASA Glean Reseamh Center.

3.4 Finite Element Models

The finite element unit cell analyzed cow_Lsted of an identical periodic, three dimensional non-staggered

array of fibers (similar to that ic___li2_d with GMC) _4th the corresponding dimensions shox_n in Fig. 3. The

unit cell dimension _ere chosen such that b x_uld be proportional to a (i.e., b _ 3a) througla the constant

3. In the c__e of hexagonal packing, 3 ---- v_, and the distance between neighboring fiber ends (end-to-end

distance, equaJ to c -- l/in Fig. 3) was .set to the closest distance between two fibers (side-to-side distance,

equal to e in Fig. 3).

These conditions, together with the fiberdiameter and _z_lunm fraction,sufficeto determine the dimension

a. b and c for the repeating _lume element (I_VE) to be anaJyzed. Note that a new unit cell and its

corresponding 3D mesh are generated for each fiber aspect ratio (l/d) and fiber x_lume fraction (v f).
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GMCunit cell FE unit cell

X3

Figure 3: E.xample representatH_ x_lume element and finite element unit _ for a_ = 5.0 and _ = 0.2

Stiffnesses _ithin the elastic and plastic range of these unit ceEs were calculated using [ABAQUS (1998)].

Fully integrated, first order, .solid element_ were used, as this element _'pe does not suffer from vohtmetric

1o"cking, which is critical for _rate elastoplastic calculations. The mesh discretization containing 13,300

elements employed is shox_la in Fig. 3. This mesh density is approximately three times finer than that used

_- [_Veissenbek and Rammerstorfer (1993)] and was shown during the course of this work (by convergency

studies) to be sutficiently aceurate for both elastic and inelastic analysis. Modeling of only one eighth of the

whole l_\rE (depicted on the left) was achieved due to the use of appropriate symmetric bounda_- conditions.

For example, when considering axial or transverse loading, symmetry requires all faces of the unit cell to

remain plane. Consequently, to determine Ell and tJl2 the normal displaxm_ments of the front (Xl ----0), left

(x2 ---- a� °) and bottom (x3 ffi 0) faces of the unit cell were fixed. Then a master node was defined (the

intersection point of the back, fight and top face) and linear constraint equations applied on the back, right

and top face such that the normal displacements of all nodes (except the master node) on these faces were

set equal to the normal displacements of the master node. The tangential displacements on all fao_ were left

unconstrained. The average (marco) stress was then computed from the reaction force of the master node

divided by the cr_xss-_ectional area normal to the reaction force of the inx_tigated unit coll. Similarl3_ the

ax_rage (macro) strain was computed by dividing the displacement of the master node _" the corresponding

length of the trait cell. For com_mience, a one Newton load was applied to the unit cell.

Analogous conditions were used to load the unit cell in the xe-direction to determine E22 and u23.

The fifth and final independent material parameter for tmusversal i_otroplc material, the longitudinal shear

modulus G12. could also be determined using the unit cell sho_la in Fig. 3, _ssuming the appropriate periodic

boundaxy conditiorLs _re applied to each face. This more complicated analysis was not undertaken at this

time.

4 Results

4.1 Elastic Material Behavior

All of the analytical micromechanie_ theories used in this study predict full transversely isotropic prop-

erties. Traus_me i_otro_- about the xl axis implies that the stiffness behavior is the same for any loading

-"In [ABAQUS (1998)] this is _he element known as C3D8.
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direction in the 2-3 plane; consequently, this not only requires that E22 _ E33, but also that

E22

G2a = 2(1 + _2a)" (1)

Therefore, only fixe independent stiffn_s constants (e.g., Ell. E22, /_12, //23 and G12) need be determined for

the ca_e of tran_sxerse isotmp3; Periodic unit cells _ith hexagonal packing should be traazsx_ersely Lsotmpic

as there are sL'_ planes of s3-nunetry. Howexer, since periodic bounda_" conditions x_ere not applied to the

FE unit cell, we were unable to obtain G12 from the FE inx_tigotior_s. Cousequentb', we wUl limit our

compari,son for the x_trious approaches to the prediction of Ell, E22, v12 and v23 only.

R_ults of the normalized a2dal modultts (Xl- direction, .scaled _- the matrix modulus) obtained from the

VChl-model (hlThl-model), Hashin-Shtrikanan estimates, OhlC-. and FE-model are shown in Fig. 4 (DIgX
like materials with a lower stiffneezs ratio, e.g., s_ = 3) and Fig. 5 (PhIC llke material, with a higher stiffn_s

ratio, e.g., s_ -- 30) for numerous fiber aspect ratias and two fiber x_lume fractious, a low (vy --- 0.2) and

a high (vf = 0.5). The Hashin-Shtrilmlan-, GlklC- and FE-modeLs were ex-/duated only at dizcremte aspect
ratk,s; whereas, the VCM-result were computed for many different aspect ratios and thus d_spl_'ed xx-ith a

solid line. Note, for high stiffne_ ratiau only the lower VCM-bound (which corresponds to the hITM) was

plotted. From Fi_s. 4 and 5 it Lsapparent that the influence of fiber aspect ratio on Ell Lssignificant (hlax.

error of 35%) for a compo._ite with a high stiflhe'_s ratio whereas relatix_ly in.significant (Max. error of 3°70)

for materials with a low stiffmee, s ratio. In both case_ the Hashin-Shtrikanan estimate l_" as expected x_-ithin

the upper and lower VCM bounds. The ChiC- and FE-reeult,s are partially out of the Mori-Tanka based

VChl-beunds due to the different inclusion topolo$3" (eUipsoidal xersus cylindrical). Generally speaking,

the OMO-model under_timates the longitudinal stiffness, particularly for high stiffnee_s ratio_, although the

trend Lscaptured quite nicel3. Alternatixely, for materials with low stiffness ratias, good agreement bet_een

GMC and Hashin-Shtritmaan estimates as compared with FE-remlts are observed gi_a a wide range of

aspect ratios and fiber x_lume fractions.

:_ 2.5-

"_ 2

0

e"

"_ 1.5

>-

--&

<

1

VCM L.B.

-- VCM UB.

HS-Estimates

O FE-Results

A GMC-l_esuhs

V_=0.2 .-- _ .........

10

Aspect Ratio. aR

IOO

Figure 4: Comparison of axial modulus ratkm for s_ -- _L-_ ffi 3

The physical rea_n for the difference betwee_a the FEA-results and thc_se of GhlC can be inferred from

Fig. 6, where the longitudinal stress distributions for a load in the w-direction are sho_. In beth FEA

analy._es _ho_n in Fig. 6, the geometr% boundar T conditions, and applied forces are the _me. Only the

._ti_ne_ ratio between matrix and fiber coustituent material i_ different. Evidently, theee stree_ contoum
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Figure 5: Comparison of axial modulus ratios for sT -- _EX,.Ex,---- 30

indicate that an increase in the stilrmessratio leads to a decrease in the matrix loading and conversely to

an increase in the fiber loading (see maximum and minimttm stress xalues). Similarly, the difference of the

"mean" matrix stress in the _lume of material bet_en the two fiber ends as compared _Sth the '_mean" fiber

stress becomes greater as the stiffness ratio is increased. Considering, the GMC representation, the stresses

are corLstant and equal along a longitudinal fiber-matrix row. Therefore the error for lo_r stiffness ratios

is decreased, yet when the stiffness ratio increases so too does the error. Figure 6 aLso gix_es an explanation

as too why the CMC stiffness results are sli_at_" under the FE-results in Fig. 4, as the GMC &mumptious

lead to an unloading of the "stiff" fiber and to an additional loading of the "soft" matrix.

Figures 7 mad 8 illnstrate the normalized transverse modulus results obtained from the _arious analytical

and numerical methods cousiderecL Here as one would expect, the fiber aspect ratio has little, if an3",

effect on the transverse modulus ALso, in general the CIMC results compare fav_rabl)" (ma_fmum error of

appro.ximatel 3" 5_0) with the FE-results throughout. For both stiffness ratios, the Hashin-Shtritanan estimates

are equal to the lower VCM bound (which in turn are equal to the ori_inal MTM-results). Notewx)rthy is the

fact that the GlklC-results are much closer to the FE-results for the case of high stiffness ratios, low aspect

ratios, and high fiber x_)lume fraction.s than the other analytical estimates. Similarly, as olaserved for the

longitudinal stiffness the ClUalitative trend of the FE results is better captured 65" GMC.

To help explain this observation, we examine the calculated transverse stress distribution obtained from

FEA, as shox_Ta in Fig. 9. Note, only the case for the low stiffness ratio (s_ = 3) is sho_-n in Fig. 9 as

the FE-msults for the higher stiffness ratios appear similax. Relatix_e to the FE-results for the longitudinal

loading case. the difference in the b_nean" matrix stress of the x_)lume of material between the two fibers

in the loading direction and that of the _mean" fiber stresses for the transverse loading case are small.

Consequently, the inaccuracy caused _, ha_dng similar stress states in a given row or column of subcells

within GMC is small; thus explaining the lack of influence the stiffnessratio has on the GMC predictions

relative to those determined using an FEA unit cell.

Figures I0 and 11 show a comparison of the axial Poisson's ratios based on the _arious evaluation methods.

Again the comparison between FEA and GMC results are quite fax_rable, irrespective of aspect ratio and

stiffnessratio: the difference being appro_xLmately a maximum of 5.2%. A_dn, the GMC results follow the

qualitative trend of the FE-results much better than either the HameLin Shtrikman estimates or MTM-results,

especially for the caze of high stiffness ratios and low fiber aspect ratios.
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Figure 9: Example of transverse stresses obtained from FE-calculation for 8,. = 3 (VF = 0.2, an = 5.0)
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Figt_re 10: Comparison of axial Poisson ratios for s,. = 3
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Figure 11: C()ml)arison of axial Poisson ratios for s,. = 30

Silnilarly, results for the in-plane Poisson's ratio u23 appear in Figs. 12 and 13. Once again, in general

the GMC results are slightly above those produced with FEA. The Hashin-Shtrikman estimates being closer

to the FE-results than the GMC results. Tile discrepancy between methods being more evident with higher

fiber volume fi'action than higher stiffness ratios. Even so, the maximum error between the GMC predictions

and those of FEA is at most 4.8_:.

4.2 Elastoplastic Material Behavior

In this section the elastoplastic stiffness behavior of aligned short-fiber composites will be analyzed using

primarily the GMC and tile finite element method. A comparison of the resulting predictions should confirm

whether or not the GMC is capable of accurately simulating the elastoplastic stiffness behavior of DRX

materials. Additionally, results obtained from a senti-analytical elastoplastic shear lag model (see Appendix

13) are included as well to help illuminate any differences between the methods. The investigated model

t)arameters are similar to those of the elastic investigation, with tile exception that only two fiber aspect

ratios (Or = 5 and 25) are examined. Furthermore we restrict ourselves to the case of longitudinal (xl-

direction) loading so a.s to allow the inclusion of shear lag results.

Figure 14 shows the effective longitudinal stress-strain curve produced by the GMC (dotted and dashed

line), FE unit cell (solid line), and shear lag (symbols) models for the special case of V_ = 0.2, a,. = 5, s,. :- 3.

Clearly, a large difference in the longitudinal stiffness response exists, depending upon the analysis method

employed, with the GMC model predictions being significantly softer. The question before us is whether or

not the lack of shear coupling inherent in the GMC method is the primary cause for the softer elastoplastic

behavior. To address this question, we introduced a senti-analytical shear-lag-model (and shear-free model) as

described in Apl)endix B. A comparison of the shear-lag (open circles) and shear-free (open square symbols)

models with those of FE and GMC are also shown in Fig. 14.

Evidently, the 8-subcell (1 fiber subcell surrounded by 7 matrix subcells) GMC results and the shear-free

model results agTee extremely well; whereas, those determined using the elastoplastic shear-lag model agree

with those coming from the FE refit cell model. Consequently, it may be concluded that:

1. The difference between the GMC- and FE-sinlulations is directly related to the lack of normal-shear

coupling inherent in the GMC formulation.
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2. The standard (without any modifications) GhlC-model is not well suited for predicting the elastoplastic

response behavior of DI_X materials, as the GMC-model predicts an overly .soft plastic response.

3. The semi-a.nalytieal elastoplastie shear-free and shear-lag motlalz introduced in Appendix B appear

fully capable of predicting both the GMC- and FEA-results. The primary dizadxantage of this shear-

lag model being its "'uulaxlal" nature, that ks, it can only pro_dde the effective modulus (response) in

a single direction.

In addition to the peeudo-o:luare 3 fiber (8-subcell) GMC representation (dotted line) in Fig. 14, the

typical (338 subcell) circular fiber unit cell (dashed line) ks sho_na in Fig. 14. Clearly, a discretization effect
ks observed and is a result of the piece_-Lse plastification of the matrix zubcellz between the t_z) fiber ends

in the case of the finer GMC-modeL This effect results in a softer response within the initial plastic range

(i.e., from 0.2 - 0.5% strain range). After plastification of all matrix subcells the effective hardening slope of

both GMC unit cells are essentially the same.

To x_rif3 the above conclusions, simulations _4th other aspect ratios, x_lume fractiotm and stii_ess ratios

xver_ conducted x_4th the results being dizplm_d in Fi_;s. 15 - 18. The semi-analytical shear-free model L_not

shown in these figures as its results alw_'s agreed _4th the GMC (pseudo square) simulations. The fitting

parameter _pof the semi-analytical shear-lag-model ks found to be only a function of the fiber _olume fraction

i.e. W _- w(I/)') and takes a xnalue of approximately 2 f_r Wf _ffi 0.2 and approximate_" 2.5 for 1/) _= 0.5. The
dashed lines in all figures represent the effective stress-strain response of the standard circular GMC-model.

All figures confirm the above conclusions.

Some characteristic features of the effective finite element stress-strain curves in Fib's. 15 - 18 are e_ddent;

for example, in_ing either the aspect ratio or _lume fraction significantly harem, s the composite response,

paxtieularly for high stiffnem ratio materials. The elastoplastic stiffnes, s responze m_" be partitioned into

three ranges. Figure 19 shows these ranges a,s a function of effective longitudinal strain.

Range 1, delineates the domain where linear elastic behavior ks manifested, This ks foUowed by range 2

in which a large xariation in the hardening slope takes place and range 3 in which approximately a constant

3In GMC the geometry of the subceU representing the fiber is square: however in actuality since all fields are taken at the

centroid of the subcell only the ratio of subcell to total length is important, no comers are felt. Thus the square fiber is really

a pseudo-square.
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(s_ = a, vf = 0.2, a_ = 5)

effective hardening slope is obser_L More detailed investigations into the flow behavior show that at the

beginning of range 2 the matrix material bet_en the two fiber ends begins to yield first (.see Fig. 19, point

1). After which the whole matrix yields (point 2). During the longitudinal loading step the matrLx from the

side-to-side region tries to move to the end-to-end region. This material flow leads to a considerable shear

loading of the side-to-side matrix interphase (between fiber and matrix). In the plastic range large shear

deformations of the interphase start at the fiber ends (point 3), then grow over the fiber and prevent any

additional loading of the fiber. In the c._se of the semi-analytical shear-lag-model this mea_s that one by

one each non-linear truss element _q.ll start to yiekL All trusses are plastic at point 4 (see Fig. 19), which is

the beginning of range 3. Note, the stair-stepped dashed line in Fig. 19 indicates the piecewise yielding of,

altogether, five trns, s elements.

Based on these results, the question remaining i,s whether the GMC can be appropriately modified in

order to predict accurately the elastoplastic behaxdor of DP_X materials. C,on_idering why the GMC fails,

it becomes clear that if the matrix between the two fiber ends yields, the fiber is no longer capable of

earr3"ing any additional load be3xmd the matrix since both the matrix and fiber have the same stre_ state.

This continuity of specific stre_s components along a given row or column of subcells is a direct result of the

inherent lack of normal and shear coupling a4th GMC. Given thiz fact, a simple modification to GMC would

be the introduction of an artificial matrix material for all subcells x_fthin the region between the two fiber

ends. This new artificial matrix material must be chasen so that the resulting effective stress-straln curve

produced corresponds x_ith the reference data (be it experimental or analytical). Of course this strategy

poasesses the drawback that the obtained micro-mechanical GMC stress state is no longer based on any"

p_'sical meaning; i.e., fracture, damage or fatigue analyses could no longer be performed confidently when

using the modified OMC-re_ults, as the microfield quantities would be e_m more questionable than before.

As a first attempt, the artificial matrix material was a_samaed to behave as purely elastic, _5th the

associated _ung's modulus of the artificial matrix material being that of the matrix itself. Clearly, such an

a_sumption results in the overestimation (at le&st xveU within the plastic range) of the elastoplastic response

curve as illustrated in Fig. 20. This response prediction is non-con_ser_atix_. In contrast, it Ls shox_aa that the
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standard CMC-model provides a lower bound (oanserxative response prediction) for the effective elastoplastic
behavior, thus suggesting that an artificial bilinear elastoplastic material might provide a more _rate

simulation. For such a material definition, four material paxametem would be required a.s input; the" are

1) Poisson's ratio, 2) _ung's modulus, 3) yield stre_s, and 4) the plastic hardening slope. With the yield
stree_ and hardening slope being the best candidates for modification from that of the matrix material, since

the elastic range is already aomrately predicted, the parameters (E,u) can be taken to be that of the matrix

material. Here _ restrict oumelx_as to the modification of the hardening slope alone (keeping the yield

the same &s the of the matrix) and thereby attempt to obtain the unknown artificial hardening slope E_
from the consideration of a simple one dimensional spring model (with each spring corresponding to a glx_en
subcell) which is slaowla in Fig. 21.

The folloxving _ion is limited to range 3 in Fig. 19 (i.e., the range where the effective hardening

slope is approximately constant). A_sume an incremental load, ,AF, is applied to the spring _blage in

Fig. 21. This results in an incremental displ_ent, Au, that depends on both the geometry and material
properties of the spring a.s_mblage, that is,

ffi _ "b E_AI E.,,_(A--Af)
+ l :Xu, (2)

E/A/

where A is the total cr_ ,_._ctional area of the considered unit _ and Af the fiber cro_ sectional area.

E_r and E_/ are the hardening slope and artificial hardening .slope, respectively. Alternatively, the global
longitudinal stiffne_ behavior can be described _-

Eef.f A
-XF ffi -H _ Au (3)l

where E_ f/ is the effecti_ longitudinal h_dening slope. The combination of Eq_.

introduction of the folloxving abbreviations,

ar'H _--_H' _r,I-I-_ --EH' Irffi"-f, V/ffiAft/.._

(2) and (3), and the

(4)
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lead to the final equation for the artificial hardening slope:

EH s{iH(1--lT) {s eyf _-- 1)* = ,-,H+ z. (5)
E.  A:U - _

Note, the only unlmox_la in this equation Ls the effective longitudinal hardening slope E_f f which for example

m_" be determined from the _mi-analytical shear-lag model (,see Appendix B) or obtained from ,some other
referencedata.

A comparison of the FE-, GMC-, GMC-bilinear-modified-model respotme histories are zho_a in Figs. 22-

25. E_dentb', _s one might expect, the GhlC-model, modified by using an artificial bilinear matrix material

definition in the intermediate suboell, results in a more accurate longitudinal simulation than the previous

standard GMC-model (see Fig. 14 and that modified tLsing an artificial elastic matrix material definition).

Vfith this approach, reasonably accurate results can be produced when range 2 is small, typically for high fiber

aspect ratios and low stiffiaess ratios. Alternatively, for situations inxx_lxqng high stiffzaess ratio material,s,

low xulume fraetioms and high aspect ratios (e.g., a_ ffi 25, ,see Fig. 24) simulations using the modified

GMC approach give the largest error. This is due to the fact that these conditions induce the smallest area

(higlaly loaded) subcell between fibers and thus maximizes the flow between inclusions; there," prochieing
the most compliant overall response. Clearly, only a small difference exists between FE and GMC results in

the extensive plastic range. This is due to the fitting procedure utilized for the simple spring model. Note

that, again all response histories are conservative when compared with FEA simulations.

More detailed studies _vere not performed at this time using a more complex artificial matrix material

definition, since the actual _e_s of such an ad-hoc approach is debatable due to the lack of an)" real
physical meaning. Furthermore, a new higher order GlkIC theo D" (appropriately termed - high fidelity

GMC), which prox5des the necessary normal and shear coupling, ha,s recently been developed _" [Aboudi et.

al.(2001)]. This new formulation, although more computationally demanding than the standard or modified
GMC (but significant b" faster than the FEA approach) should proxdde the required balance between speed

and accuracy when attempting to simulate DI_X material behavior. Consequentb. further analysis using

the GMC will be reserved until later when the theoretical extension of the present elastic continuously

reinforced high fideli_- GMC version (.see [Aboudi et. al.(2001)]) to that of d_vontinuotm and inela,stic

material behaxior, is accomplished.

NASA/TM--2001-211165 21



_3

ca)
c-
o

...d

o
>

800

600

400

200

' I * I _,o ° I '

- - - moditied GMC-Models /. o" *

FE-Models Joo°

..- %=25

.*'" aa= 5 .,- ..........

00 i t i I i I i0.005 0.01 0.015

Effective Longitudinal Strain. g_

i
0.02

Figure 22: Comparison of FE- and GMC-modified moclel (st -- 3, _,). = 0.2)

2500

2000

1500

"D

1000:

_- 500

0 o

' I ' I ' I ./....*

- - - modified GMC-Models ./.**"

FE-Models S'"

, I a I t I ,
0.005 0.01 0.015 0.02

Effective Longitudinal Strain, eeff

Figure 23: Comparison of FE- and GMC-modified model simulations (s_ = 3, Vf = 0.5)

NASAfrM_2001-211165 22



20O

150

¢-

= 100

e-

,..d

>
',=

_ 50

o_

--:m e 'OMC-Mo e,s1/' '

___-.-.._...a_.__...

0.005 0.01 0.015 0.02

Effective Longitudinal Strain. cefr

Figure 2,4: Comparison of FE- and GMC-modified model simulations (s_ -----30, Vy = 0.2)

600 ' I ' / I ," ' I '
A"

- - - modified GMC-models ,"
F-E-Models ,"

500

eeeeas

400 °'aR=25

300
200 / ,,'" / .................. -

r/..i>_.. _-_-..........
100 _... ........ "

00" ' 0.;05 ' 0./1 ' 0./15 ' 0.02

Effective Longitudinal Strain. eel f

Figure 9_5: Comparison of FE- and GMC-modified model simulation_s (st -----80, Vy = 0.5)

NASA/TM--2001-211165 23



5 Conclusions

Th£s paper has focused on e_duating the predictive ability of the generalized method of cells, in the

context of di_continuotLsl3" reinforced compc_site (DI_X) material behax4or; specifically aligned .short fiber

composites. CI_IC simulations were compared with: i) simulations using other micromechanical based mean

field modeLs and finite element (FE) unit cell models found in the literature for the elastic rang_, as _eli

as it) finite element unit cell model and a new _mi-analytical elastoplastic .shear lag model in the inelastic

range. R_,_ults indicated that the GMC is fully capable of accurateh- analyzing the elastic behavior of DI_X

materials. However, in the case of inelastic behavior, the standard GMC approach, due to the inherent lack

of normal-c, hear coupling, was shown to be unsuitable for predicting the longitudinal elastoplastic beha_dor

of aligned short fiber reinforced ceml_sites. However, a simple modification of the GMC-model, through

the introduction of an "artificial" bilinear matrLx material definition within the subceil(s) residing between
inclusion (fiber) ends was shox_la to improve the ox_rb co_er_atix._ GlklC predictions within the elastoplastic

regime significantly. This ad-hoc modification to the GhlC unit cell definition x_x_uld allow re&sonably

accurate multimxial simulations to be made. The case when both the stiffness and fiber aspect ratios are

high being the least ae_mrate. Finally,it was sho_Ta herein that an elastoplastic shear lag model can

prox_de identical uniaxial results to that of the FE unit cell calculations. For truly conzistent and accurate

resultsit is recommended that a high fidelity micromechanics approach be used when examining inelastic

discontinuously reinforced composite behavior.
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6 Appendix A: Generalized Method of Cells Formulation

GMC can predict the elastic and inelastic thermomechanical responze of both continuous and di_ontin-

uotLs multiphv._ comtx_site materials with an arbitra D internal micra_tructure and reinforcement shape.

It L_ a continuum-be.o_d microm_.hanie_ model that pro_5des closed-form expressions for the macroscopic

compa_ite responze in tern_s of the properties, size, shape, cl£stribution, and response of the indixSdual con-

stituents or phases that make up the material 4. These con_stituent materials can be represented tLsing any

elastic and/or inela._tic deformation and life (e.g., continuum damage mechani_ fatigue model) model. The

periodic nature of compasites typically aUows identification of a repeating unit cell that can be tt_cl as a

building block to con_struct the entire compasite. The propertie_ of this unit cell are thu_s representative of

the properties of the entire _semblage once the subcell dimension._ and appropriate subcell materiaL_ are

_lected. ThtL_, unidirectional long-fiber coml_ites, short-fiber composites, porous material_ and laminated
materials can all be modeled v.s special cases.

6.1 Model Description

Co_ider a comlx_site material with a periodic structure whase repeating volume element co_sLsts of

.\_ × .\_ × .\_ rectangular parallelepiped subcelLs. The _lume of each one of the subcells is dah3(_, where

a, Sandy are running indices: a _- 1.... ,.hra : 3 = 1.... ?_) : ? ---- 1..... _\_, in thexl , x2 andx3 -

directio_, respectively. The total _x>lume of the repeating _x_lume element Ls dh( where d -----_o=1 do ,
N

h ----_-:_3:-1 h3 , C ----_'-:_c_l (_" In Fig. 26, an example is ahown for a repeating xx_lume element with .N_ -----2.

.\_ = 3 and .\_ -----3.

x3

Subcell 1

xT'-
h 3

_=3 h 2

_=2 h I dl
13=1 _=1

Figure 26: Triply periodic repeating unit cell, Ultmtrating subcell dimension nomenclature.

By an approximate micromechanical analysis of the detailed interactions of the subcells of the repeating

_>lume element, overall constitutive relations which govern the effective beha_5or of the multiph_.se elasto-
plastic composite, can be established. This analysiz relle_ on the requirements that static equilibrium of the

materials in the xariotm suboellz are e_sured, and that continuity of the di.splacements and tractioms between

neighboring subcell_ _4thin the repeating volume element, as well as between neighboring repeating volume

elements is satisfied on an average basis.

_Note. each of the subcells can be comprised, in general. _ an elastic-vi_coplastic temperature -dependent material.
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As the average behavior of the composite is .sought, it is sufficient to con.sider a first order theory in which

the displacements ul '_3_) in the subcells are expanded linear_" in terms of the distances from the center of

-(a) -I3) ,_(a,_)each subcell, i.e., in fern,s of the local coordinates x i , x_ , and . Thus, the first order expansion in

the subcell (o3_) is represented as,

__!_)_(_s_) _(3) (.z_)__(_),_ =1,2, (A-l)

,,'here wl'_snl(x) are the displacement components at the center of the subeell, and ol °3_) , X'i"_s_' and

_(i _s_ are micro-xariables that characterize the linear dependence of the displacement u_i_3_) on the local

x 2 , In Eq. (A-l) and the .sequel, repeated Greek letters do not inlply summation.

Note thai due to the linearity of Eq. (A-l) , static equilibrium of the material within the subcell (c_3?) is
ensured.

The components of the .small strain te_or are gixen by

= -_(aiuj +%f_i l i,j ----1,2,3 (A-2)

,,'here & a/_g'l _) , o_ -(3= = 0/o 2 and0%=
The x_lume averaged total strains and stresses in the composite are expre_d, respectively, a.s

and

2=1

(A-3)

1 N_ N8 N_

g'i, = _ E E E d_hff, ,ri. i=(_*') (A-4)
a=l 3=1 ")=1

-(a3-_)
with the relationship bet_een the ax_erages of the stress ,r0=('_3_), total strain _i_ , inelastic strain _I(_3_)¢U'

=T(a 3"))¢ij = ctiJ-(a3"_ ) _, ,.,-..%._( 3"_ )and thermal strain where ctl_ is the coefficient of thermal expansion tensor, and AT

is the temperature deviation T- Ta from a reference temperature T_) being given _ the cla._sic Hookean

constitutive equation

_.( a 3'_ ) r.,Ia3_/ _-(a3"_ -I(a3_) =T(a3_)
ij = t_i_c (%c - %c - %c ) (A-5)

/..-,( _33 )
where "-_j_c is the elastic stiffness tensor of the material.

It has b_ _ho,,_ ([P_" and ibeudi (1992)] and [A_oudi(m95)]) that _" emp_o.,_ing the d_p|_-ment
and traction continuity conditions at the interfaces between the aubceEs of the repeating _ltune element,

and at the interfaces between neighboring repeating v_lume elements, it is p_sible to eliminate the micro-

xm'iables and obtain, via a smoothing operation (homogenization), a set of continuum equations that model

the overall km_havior of the multiph_se short-fiber composite. ThLs was achieved _" establishing relationships

which connect the microstrains at the subcelLs to the total overall macrostrahxs in the composite via the

appropriate concentration tensors, A and D.

6.2 Overall Thermomechanical Constitutive Law

Gix__.u the_e concentration matrices, .A (a3-_) and D f'_3_), expressions for the average total strain and

stress, respectix_y, in each subcell can be constructed; thai is,

and

(A-6)

(A-7)
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in terms of the uniform m_rall strain _ (the applied macrc_straln) and the subcel] inelastic and thermal

strains, where

-1 0 -1I,l o l
and AM inx_)h_s the elastic properties C (_3_) of the subcell material, AG the geometric dimensions of the

repeating cell only, and J is a matrix containing the imlx_sed ax_rage (composite) strains. Note, A/°33)

and D 1"_33) are ,square matrices of 6.V_.\r3N_ order. Similarly, notice that the same matrices D _0331 are

operating on both the inelastic and thermal strains of the subcelis,

It was sho_-n by Dxx)rak and Benx_niste (1992) and Dx_rak (1992) that for any representatix_ xx)lume

element under a uniform ox_rall strain _ and temperature change .IT, which contains a piecewise uniform

dLstribution of thermal and inelastic fields (eige_strahm) associated with the applied loading _ , the ax_rages

of the local strains can be expressed in ternls of the mechanical and eigenstraln concentration teamors. These

tetmors depend on the local elastic modull, and on the shape and _x)lume fraction of the phases and are

therefore constant. Equation (A-6) is oonsLstent _x_ith this representation of the average subcell strain, where

the constant mechanical and eige_strain concentration tensors are gix._a _ A (_ 33) and D __ 33 ) respectix_ly.

Consequently, the follmxJng effective elastoplastic thermomechanical law of the compe_site can be estab-

lished

= B*(_ - _ - _r) (A-S)

where the effective elastic stiiTness tensor, B*, of the composite is gix_n by

3* = -] A_ Na N.

a=l 3=1 3=1

and the composite inelastic strain tensor is defined as

= dh-"---_ _ _-_ _-" doh3[_C("33)(V("33)e_ _ _d,,_33)) (A-10)
ct=l 3=1 3----1

and the average thermal strain tensor as

_:r -B *-1 ._k N. N.
= -- _ ..... _3 _ _ _ (A-11)

_=1 3=1 3=1

with subcell inelastic, _, and thermal. %r, strains being defined as:

I (_I(111) .. _II,% :,'_x. 1) (A-12)

r = (_r!_) . ,-_T(,V.._%_V, )) (A-13)

The effecti\_ coefficient of thermal expansion x_ctor. _t* of the mmlx_site, is gix_n _-

_* = _.r /.IY (A-14)

The abo_ micromechanically established overall thermo-inelastic constitutix_ law (A-8) is x_lid for any

D'pe of thermom_:hanical loading (i.e., any combination of normal, shear and thermal loadin_s). A significant

adxxntage of this constitutix_ law sten_s from the fact that it does not rely on an3 s3anmetry conditions that

m_ exist under certain types of applied loadings. Tht_s in the implementation of this law, the question as

to whether such s3anmetrT conditions exist or not is irrelevant.
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7 Appendix B: Semi-analytical Axisymmetric Elastoplastic Shear

Lag Model

Given the elastoplastic inx_tigatio_s under taken in this study', a simple shear-lag model for aligned

short fiber comlx_site_ Ls introduced. As mentioned in the back_ound .section, shear lag models were the

first micromechani_ models considered for aligned short-fiber composites. Despite some seriotm theoretical

flaws (e.g., the ability to predict only the longitudinal modulu.s El 1 within the elastic range), shear lag modeLs

haxe enj_-ed enduring popularity; probably due to their algebraic simplicity and their physical appeal. In

tills paper, we haxe purpo_fully limited our inx_stigation to the longitudinal elastoplastic stiffness behaxior

so that the prolx_'_d modified shear lag model can be appropriately utilize.

Folloxx-ing Cox (1952), the shear lag analyses are focussed on a single fiber of length If and raditm rf,

which i.s encased in a conoentrie _lindrical sheU of radius /_. Such a configuration then leads to the k_

assumption of a shear lag model, which is that the shear stre_s between fiber and matrix (_'._, r. ¢, z...

c3"lindrical coordinate system) is proportional to the differe_oe in cEsplaemment between the fiber surface and

the outer matrix surface, i.e.,

H (W(l_.z)--W(rf, Z)) (_1)

where H is a constant and can be written as

H = _(R/w)_ 1" (]3-2)

It remain_s to cho_e the radius/_ of the outer matrix c3"linder. Sex_eral choiom hax_e been used (see e.g. [Tucker

and Liang (1999)]). For our purtx_es it appears mast realistic to let /_ be equal to a radius corresponding

to the width of the FE or GMC unit cell. The abox_e equation_ are b_xi on a one-dimetmional analysis of

a fiber surrounded _- a matrix layer (i.e., the PoL_on effects are neglected (taken to be zero)) and assume_

linear elastic material _Jaa\ior. To extend this analysis into the elastoplaatic regime of aligned short fiber

composites, the existing shear-lag model must be modified so as to:

1. account for elastoplastic material behaxdor and

2. the appropriate PoLsson effect.

The elasteplastic material }mhax_ior is simply introduced _" replacing G,n by the plastic tangent ahear

modulus GH ("shear hardening slope") and an incremental formulation of Eq. (B-I), i.e.,

with

2_rrf k /

(B-3)

= 2_G_ (B-4)

This new "shear hardening slope" can then be obtained frem the Prandtl-R_u_s-equation. For a pure

shear load in the r-z-plane this equation can be written as

1 3 d_'_

,_, = _7_, d_-_ + __.__'_ . (B-5)

and leads final13 - to the .shear hardening slope

(B-6)
dTr: C, mEH

Gn ffi _ = W E_ + 3G,. = const
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Axial-symmetry Matrix

II

III < IV

Fiber

Symmetry

Figure 27: Sketch of the zemi-analytical shear lag model

where GH is constant because EH i._ a constant. Note, within the plastic range a fitting parameter W is

also introduced. This fitting parameter _51l account for effects which can not be captured _- such a simple
model.

The Poiszon effect is taken into account by considering an axiz31mmetric model (showla in Fig. 27 nsing

an exploded view) with appropriate boundary conditions on the concentric cylindrical matrix shell.

The model pasae_ the follox_Sng characteristic:

° The cro_s section of the axiz3anmeiric model in dixfded into four regions (I, II, III, IV). Further.

regions 1II and IV are subdix4ded into three subregions each, e.g., Illa, llIb, Illc and IVa, IF'b,

IVc (see Fig. 27).

2. \Vithin all regions only normal stress is allo_ad (i.e., shear stre_es are zero) .such that reetan_atlar

cross sections of indixqdual regions remain rectangular after loading.

3. The longitudinal stress are constant within regions I and II and are piecewise constant within regions

111 and IV (i.e., constant within each subregion).

4. The points 1-1', 2-2', etc. are connected with non-linear trttus elements which characterize the shear

forces between the fiber and the matrix.

, The stiffness behavior of each non-linear truss element, i, is based on Eq. (B-l), and follows from

where, e.g., for i --- 1, l_ is the distance betx_en points 1 and 2 in Fig. 27 and reprec:eats a -kind of

shear-influence length for truzz 1. Ctlr,,, represents the stiffne_ of truss 1 between points 1-1'. The

material behaxSor of the truss element is bilinear and is characterized by a '3"ield force" (which is b_sed

on Tresca's yield condition for pure shear within the interface) and can be written a.s

i fly i

Ft ...... y -_ _-2_rr f lr (B-8)
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as weU as by a stiffm_s hardening slope which can be written as

i

The number of introduced trtr_s elements depencts on the desired aspect ratio. For ar = 5 three tru._.s

element,s were nsed, wherea.s for a,. _- 25 sL'_ trtm.ses x_ere applied.

6. Finally, in addition to the ssamnetry conditions shox_-n ill Fig. 27, symmet_" is also required on the top

and fight outer surface of the azds3anmetric model (,see Fig. 27).

The introduced ,semi-analytical shear lag model is solx_d numerically using the finite element method.

The so called ,semi-analytical shear-free model is obtained _" assunfing that the truss elements are

characterized _" zero stiffne_.s. Such a model represents a standard OMC-model.
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